
Chapter 4
Why Typicality Does Not Explain the Approach
to Equilibrium

Roman Frigg

4.1 Introduction

A gas that is confined to the left half of a container uniformly spreads over the entire
available space as soon as the confining wall is removed. Yet we never observe the
reverse process of a uniformly distributed gas suddenly concentrating in the left half
of the container. Such irreversible behaviour is characteristic of many processes
and is enshrined in the so-called Second Law of thermodynamics, which, roughly,
states that entropy cannot decrease in isolated systems. Statistical mechanics (SM)
aims to explain irreversible behaviour in terms of the dynamical laws governing the
individual molecules of which the gas is made up. What is it about molecules and
their motions that leads them to spread out when the wall is removed? And crucially,
what accounts for the fact that the reverse process never happens?

An important answer to these questions was suggested by Boltzmann (1877), and
variants of it are currently regarded by many as the most promising option among
the innumerable of approaches to statistical mechanics. An important contemporary
version of the Boltzmannian approach, originating in the work of Joel Lebowitz
(1993a, b), differs from traditional approaches in that it explains irreversibility in
terms of the notion of ‘typicality’. Intuitively, something is typical if it happens
in the ‘vast majority’ of cases: typical lottery tickets are blanks, typical olympic
athletes are well trained, and in a typical series of a thousand coin tosses the ratio
of the number of heads and the number of tails is approximately one. The leading
idea of a typicality-based approach to SM is to show that thermodynamic behaviour
is typical; that is, that the entropy in a system typically increases.

This approach has grown increasingly popular in recent years and has been advo-
cated by a number of authors (references will be given below). The problem with
understanding this approach is that it comes in different versions, which are, how-
ever, not recognised as such, much less clearly distinguished. We often find different
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arguments pursued side by side and eventually we end up not having a clear pic-
ture of the claims being made. The aim of this paper is to disentangle different
versions of typicality-based explanations of thermodynamic behaviour and evaluate
their respective success. My somewhat sober conclusion will be that the boldest ver-
sion fails for technical reasons (having to do with the mathematical structure of the
theory), while more prudent versions leave unanswered essential questions.

Before delving into the discussion, two disclaimers are in order. First, this paper
only deals with the role typicality plays in explaining the approach to equilibrium;
what typicality has to offer in response to other problems in SM, in particular to
the question of how to reconcile the Gibbsian with the Boltzmannian approach,
needs to be discussed elsewhere. Second, typicality has also been invoked in other
contexts, for instance in Bohmian mechanics (Dürr et al., 1992; Dürr, 2001; Galvan,
2006) and in quantum SM (Goldstein et al., 2006). The use of typicality in these
theories is beyond the scope of this paper, which is concerned only with classical
Boltzmannian SM.

4.2 Classical Boltzmannian SM

Consider a system consisting of n classical particles with three degrees of free-
dom each. The state of this system is specified by a point x, also referred to as the
system’s microstate, in its 6n-dimensional phase space �, which is endowed with
the ‘standard’ Lebesgue measure μL.1 The dynamics of the system is governed by
Hamilton’s equations, which define a measure preserving flow φt on �, meaning
that for all times t, φt : � → � is a one-to-one mapping such that μ(R) = μ(φt(R))
for all regions R ⊆ �. The system’s microstate at time t0 (its ‘initial condition’),
x(t0), evolves into x(t) = φt(x(t0)) at time t. In a Hamiltonian system energy is con-
served and hence the motion of the system is confined to the 6n − 1 dimensional
energy hypersurface �E. The measure μL can be restricted to �E, which induces a
natural invariant measure μ on �E.

To each macrostate Mi, i = 1, ..., m (where m is finite), of the system, which is
characterised by the values of macroscopic parameters such as volume, local pres-
sure and local temperature, there corresponds a set of so-called micro-regions �Mi

consisting of all x ∈ � for which the macroscopic variables assume the values char-
acteristic for Mi. The �Mi together form a partition of �E, meaning that they do not
overlap and jointly cover �: �Mi ∩ �Mj = � for all i �= j and i, j = 1, ..., m, and
�M1∪...∪�Mm = �E, where ‘∪’, ‘∩’ and ‘�’ denote set theoretic union, intersection
and the empty set respectively.

The Boltzmann entropy of a macrostate Mi is defined as SB(Mi) := kB
log[μ(�Mi)], where kB is the so-called Boltzmann constant. Given this, we define
the Boltzmann entropy of a system at time t, SB(t), as the entropy of the system’s
macrostate at t: SB(t) := SB(Mx(t)), where x(t) is the system’s microstate at t and

1 For compact presentations of Boltzmann’s account see Goldstein (2001), Goldstein and Lebowitz
(2004), Lebowitz (1993a, b, 1999).
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Mx(t) is the macrostate corresponding to x(t) (i.e. Mx(t) is that Mi for which it is the
case that x(t) ∈ �Mi at t).

The idea now is that the behaviour of SB(t) mirror the behaviour of the thermo-
dynamic entropy STD; that is, it should increase with time t and reach its maximum
at equilibrium. Explaining why and how this happens is the central question the
Boltzmann approach needs to answer.2

Explaining why entropy increases makes sense only if it is far below its equilib-
rium value to begin with. That this is the case is the subject matter of the so-called
past hypothesis, the postulate that the system starts off in a low entropy macro-
condition, the ‘past state’. Depending on one’s stance on reductionism one either
takes, with the grand majority of Boltzmannians, the past state to be the Big Bang
and the system under investigation to be the entire universe, or, in keeping with the
spirit of laboratory physics, one regards states brought about in experimental set-
ups (such as the gas being confined to the left half of the container) as the past state
and takes the relevant system to be the gas in the box. How this issue is resolved is
an important question in its own right, but it is inconsequential for my discussion of
typicality.3 All that is assumed in what follows is that the system under investigation
(whatever it is) be governed by classical Hamiltonian mechanics, isolated from its
environment and come into being in a low entropy state. For this reason I adopt a
neutral language and from now talk about ‘systems’, rather than ‘the universe’, and
the ‘past state’, rather than the ‘Big Bang’.

Let Mp and Meq be the past and the equilibrium macrostate, and �Mp and �Meq

the respective micro regions (for ease of notation later on I assume, without loss
of generality, that macrostates are labelled such that Mp = M1 and Meq = Mm).
The explanandum then is this: given that the system’s macrostate at t0 is Mp
(i.e. given that the system’s microstate x(t0) lies within �Mp at t0), why does the
Boltzmann entropy increase as time unfolds and why does the system eventually
reach equilibrium (i.e. why does the system’s microstate x(t) eventually wind up in
�Meq )?

The standard Boltzmannian response is to introduce a probability measure over
the Mi and to argue that these probabilities come out such that the system is, in one
way or another, overwhelmingly likely to evolve in such a way that entropy increases
and it eventually reaches Meq (see Frigg (2008, Section 2) for a discussion of this
approach). The main problem with this response is that at some point it inevitably
has to invoke ergodicity, a notion which is notoriously beset with problems (Earman
and Rédei, 1996). Typicality approaches promise to eschew such commitments and
provide an explanation of the approach to equilibrium free of unmanageable notions
like ergodicity.

2 This ‘mirroring’ need not be perfect and occasional deviations of the Boltzmann entropy from its
thermodynamic counterpart are no cause for concern (Callender, 1999, 2001).
3 If one takes the past state to be the state at the beginning of the universe, there is the further
question of whether or not one needs to explain why the world came into being in such a special
state. For opposite views on that matter see the contributions of Callender and Price to Hitchcock
(2004).
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4.3 Typicality and the Approach to Equilibrium

Consider an element e of a set �. Typicality is a relational property of e, which e
posses with respect to�, a property P and a measure ν, often referred to as ‘tyicality
measure’.4 Roughly speaking, e is typical if most members of � have property P
and e is one of them. More precisely, let � be the subset of � consisting of all
elements that have property P. Then the element e is typical iff e ∈ � and ν�(�) :=
ν(�)/ν(�) ≥ 1 − ε, where ε is a finite but small positive real number; ν�( · ) is
referred to as the ‘measure conditional on �’, or simply ‘conditional measure’.5

Derivatively, one can then refer to � as the ‘typical set (with respect to � and ν)’
and to those elements that possess property P (i.e. the members of �) as ‘typical
elements (with respect to �, P, and ν)’. Conversely, an element e is atypical iff it
belongs to the complement of �, � := � \ �, in which case we refer to � as the
‘atypical set’ and to its members as ‘atypical elements’. For instance the number
π /4 is typical with respect to the interval [0, 1], the property ‘not being specifiable
by a finite number of digits’ and the usual Lebesgue measure on the real numbers
because it is a theorem of number theory that the set of all numbers that have this
property has measure one. Similarly, numbers in the interval [1/2, 1/2 + ε/2] are
atypical in [0, 1] because [0, 1] \ [1/2, 1/2 + ε/2] has Lebesgue measure greater
than 1 − ε.

The element of interest in SM is a microstate x. Different approaches to SM
disagree about the choice of the set � and about the selection of a relevant property
P; they all agree that the typicality measure is the Lebesgue measure μ (I discuss
this assumption in the next Section). In this Section I show that typicality is used
in (at least) three different ways to explain why a system like a gas approaches
equilibrium and argue that none of them is successful.

Before discussing these approaches an important technical result needs to be
stated. Under certain circumstances (I come back to these in Section 4.4) it is the
case that �Meq is the largest of all �Mi (relative to the Lebesgue measure μ); in
fact, for large n it is vastly larger than the area of all other regions (Ehrenfest and
Ehrenfest, 1912, 30). Numerical considerations show that the ratioμ(�Meq )/μ(�Mi),
where Mi is a ‘standard’ non-equilibrium macrostate (e.g. one of the kind in which
the gas is confined to the left half of the container), is of the magnitude of 10n

(Goldstein, 2001, 43; Penrose, 1989, 403). For want of a better term I refer to this
matter of fact as the ‘dominance of the equilibrium macrostate’.

4 Tyicality measures often are, but need not be, probability measures (Zanghì, 2005, 188).
5 This definition of typicality is adapted from Dürr (1998, Section 2), Lavis (2005, 258), Zanghì
(2005, 185), and Volchan (2007, 805). Strictly speaking one should refer to this notion as
‘ε-typicality’ because the definition depends on the choice of ε and elements that are typical with
respect to one choice of ε need not be typical with respect to another. However, nothing in what fol-
lows depends on a particular choice of ε and so there is no need to make this dependence explicit.
Furthermore, there is an alternative definition of typicality which is stricter than the one adopted
here in that it requires ν(�)/ν(�) = 1. This definition is unsuitable in the present context because
it classifies as atypical certain elements that, from a physics point of view, clearly are typical.
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This dominance is then often glossed as implying (or being equivalent to the fact)
that for large n, �E is almost entirely taken up by equilibrium microstates; in other
words, it is glossed as the fact that equilibrium microstates are typical with respect
to �E and the Lebesgue measure μ (Bricmont, 1996, 146; Goldstein, 2001, 43;
Zanghì, 2005, 191, 196). As we shall see in Section 4.4, this gloss is not generally
true. However, for the sake of argument I assume throughout this Section that we
are dealing only with systems for which this gloss is correct.

Account 1. A first account of why systems behave thermodynamically is sug-
gested by Goldstein (2001) and explains this fact in terms of the dominance of the
equilibrium macrostate:

[�E] consists almost entirely of phase points in the equilibrium macrostate [�Meq ], with

ridiculously few exceptions whose totality has volume of order 10−1020
relative to that of

[�E]. For a non-equilibrium phase point [x] of energy E, the Hamiltonian dynamics gov-
erning the motion [x(t)] would have to be ridiculously special to avoid reasonably quickly
carrying [x(t)] into [�Meq ] and keeping it there for an extremely long time – unless, of
course, [x] itself were ridiculously special. (Goldstein, 2001, 43–44)6

Some pages further down he summarises his view as follows:

Suppose a system, e.g. a gas in a box, is in a state of low entropy at some time. Why should
its entropy tend to be larger at a later time? The reason is basically that states of large
entropy correspond to regions in phase space of enormously greater volume than those of
lower entropy. (Goldstein, 2001, 49).

These passages allow for two readings. On the first – and more obvious – reading,
Goldstein suggests that a system approaches equilibrium simply because the over-
whelming majority of states in �E are equilibrium microstates; in other words, it
approaches equilibrium simply because equilibrium microstates are typical and non-
equilibrium microstates are atypical (with respect to �E and μ). This also seems to
be Zanghì’s view when he writes that

reaching the equilibrium distribution in the course of the temporal evolution of a system is
inevitable due to the fact that the overwhelming majority of microstates in the phase space
have this distribution; a fact often not understood by the critics of Boltzmann [...] (Zanghì,
2005, 196; my translation)

This point of view contrasts with one that explains the approach to equilibrium
by appeal to specific dynamical properties such as ergodicity or mixing. Goldstein
dismisses the view that either of these properties could play any role in the
foundation of SM as ‘thoroughly misguided’ (2001, 45)7:

6 Square brackets indicate that Goldstein’s notation has been replaced by the notion used in this
paper. I will use this convention throughout.
7 Albert takes a similar stance and dismisses approaches to the foundations of SM that appeal to
ergodicity as ‘sheer madness’ (2000, 70) and ergodic theory as an enterprise that has ‘produced
beautiful mathematics’ but is ultimately, if we are interested in the foundation of SM, ‘nothing
more nor less [...] than a waste of time’ (ibid.).
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Boltzmann’s key insight was that, given the energy of a system, the overwhelming majority
of its phase points on the corresponding energy surface are equilibrium points, all of which
look macroscopically more or less the same. This means that the value of any thermody-
namic quantity is, to all intents and purposes, constant on the energy surface, and averaging
over the energy surface will thus reproduce that constant value, regardless of whether or not
the system is ergodic. (Goldstein, 2001, 45)

This criticism is not specific to ergodicity and could just as well be levelled against
any other dynamical property that a system could posses. This suggests that dynam-
ical considerations are regarded as irrelevant for an explanation of the approach to
equilibrium and a system eventually reaches equilibrium just because equilibrium
conditions are typical.

This is not so. In general there is no reason to assume that points in an atypical set
have to evolve into a typical set; typical states do not per se ‘attract’ atypical states.
Uffink (2007, 979–980) provides the following example. Consider a trajectory x(t),
i.e. the set {x(t) = φt(x(t0)) | t ∈ [t0,∞)}, a set of measure zero in �E. Its comple-
ment, the set �E\x(t) of points not laying on x(t), has measure one. Hence the points
on x(t) are atypical while the ones not on x(t) are typical (with respect to �E, μ, and
the property ‘being on x(t)’). But from this we cannot conclude that a point on x(t)
eventually has to move away from x(t) and end up in � \ x(t); in fact the uniqueness
theorem for solutions tells us that it does not (for a discussion of uniqueness the-
orems see Arnold (2006)). The moral is that non-equilibrium states do not evolve
into equilibrium states simply because there are overwhelmingly more of the latter
than of the former, i.e. because the former are atypical and the latter are typical. It
does not somehow lie in the ‘nature’ of atypical states to evolve into typical ones.

One might reply that this example does not fit the mould because the claim is
not that any typical set is such that trajectories having atypical initial conditions
eventually wind up in the typical set; the claim rather is that this is a special feature
of the set that is typical with respect to the property of being an equilibrium state.

But why should this be so? Equilibrium is defined solely in terms of macroscopic
quantities and without any reference to the system’s dynamics. Why, then, should
it be the case that the micro-dynamics is such that it carries atypical points into
the typical set? The fact that the there are many more typical than atypical points
does not in any way imply that the latter have to evolve towards the former. In other
words, if a system is in an atypical microstate (which it is by the Past Hypothesis),
it does not evolve into an equilibrium microstate just because the latter are typical.
Whether or not this happens depends on the dynamics of the system, and whether
the dynamics is of the right kind is a question that cannot be answered by appeal to
measure-theoretic arguments about the system’s macrostate structure.

Account 2. If a given non-equilibrium microstate eventually evolves into an
equilibrium microstate this happens due to the dynamics of the system, which
is determined by equations of motion and the system’s Hamiltonian. Hence an
account that disregards dynamical consideration and tries to explain the approach
to equilibrium solely by appeal to considerations having to do with the measures of
macrostates is doomed to failure. So the question remains: what dynamical condi-
tions does the system have to satisfy for it to approach equilibrium? On the second
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reading of the first of the above quotations, Goldstein offers at least the beginning
of an answer to exactly this question when he restricts his claim that systems reach
equilibrium quickly to a dynamics that is not ‘ridiculously special’ and to initial
conditions that are not ‘ridiculously special’ either. This clearly is a condition on
the dynamics of the system, albeit not a very informative one because Goldstein
does not tell us what he means by ‘ridiculously special’. The only indication of what
non-ridiculously-specialness could consist in is contained in the following remark:

The dynamics of the system prefers a given equilibrium point neither more nor less than
it prefers any other given phase point, even a specific far-from equilibrium phase point,
corresponding say to the leftmost snapshot. (Goldstein, 2001, 42)

Stripped of its anthropomorphisms, this passage might be read as saying that sooner
or later x(t) visits every point in �E, which is just Boltzmann’s original definition
of ergodicity (see Sklar, 1993, 160). However, as is well known, there are no tra-
jectories that satisfy this condition (in phase spaces of more than one dimension).
An obvious way to fix the problem would be to substitute the modern definition of
ergodicity (roughly that the system’s state visits every subset of finite measure at
some point and spends an amount of time in it that is proportional to the subset’s
volume) for Boltzmann’s. However, given Goldstein’s polemic against ergodicity
this can hardly be the dynamical condition that he envisages.

So the crucial question is still unanswered: what are the properties of the
dynamics of a system that exhibits the right kind of entropy increasing behaviour?
Surprisingly, this question has hardly attracted any attention so far; in fact, I am
aware of only two proposed answers. The first is due to Bricmont, who tentatively
puts forward the suggestion

that some form of mixing is important for the approach to equilibrium to take place (after
all, for the harmonic oscillator we have neither approach to equilibrium nor any form of
mixing), but only in some kind of reduced phase space (R2 here [i.e. in the example of
a system of N uncoupled anharmonic oscillators of identical mass]), determined by the
macroscopic variables. (Bricmont, 2001, 16)

Bricmont himself is clear that this is only a ‘suggestion’ that he does ‘not know how
to formulate precisely’ (ibid.), and that it is still an open question whether, and if so
how, this suggestion can be generalised to yield a general condition that would do
the work that ergodicity (with respect to the entire phase space) was supposed to in
the orthodox approach to SM.

The second suggestion departs from Lavis’ (2008, Section 2) observation that
the Kac ring model, which, as is well known, behaves theormodynamically while
failing to be ergodic (see also Bricmont 2001, 10–14), in fact has an ergodic decom-
position. This suggests that having such a decomposition plays a part in explaining
the approach to equilibrium. Again, the difficulty is that this observation is made in
the context of a particular example and it is not at present clear whether, and if so
how, it could be generalised to yield a general necessary condition for the approach
to equilibrium to take place.

These two suggestions point in the right direction. The question is whether they
can be given a precise and general formulation, and whether it is possible to show
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that realistic systems actually obey one of them. A further question concerns the
relation between these (and potential other) conditions. Is one a special case of the
other? If not, do they belong to a family of conditions that have certain important
features in common? These are important questions that should be addressed in the
future.

Account 3. An altogether different line of argument can be found in Lebowitz
(1993a, b, 1999) and Goldstein and Lebowitz (2004) and (possibly) Zanghì (2005,
Section 2.4.4). The difference lies in the fact that what I refer to as Account 3
focusses on the internal structure of the micro-regions �Mi rather than the entire
phase space. The core of this view is captured in the following quotation:

By “typicality” we mean that for any [�Mi ] [...] the relative volume of the set of microstates
[x] in [�Mi ] for which the second law is violated [...] goes to zero rapidly (exponentially) in
the number of atoms and molecules in the system. (Goldstein and Lebowitz, 2004, 57)8

This definition contains different elements that need to be distinguished for the dis-
cussion to follow. Let us begin by introducing some notation. �(++)

Mi
is the subset

of �Mi containing all those x that lie on trajectories that come into �Mi from a
macrostate of higher entropy and that leave �Mi entering into a macrostate of higher
entropy; �(+−)

Mi
, �(−+)

Mi
and �(−−)

Mi
are defined accordingly. These four subsets form a

partition of �Mi .
9 Furthermore, �(+)

Mi
:= �

(++)
Mi

∪ �(−+)
Mi

and �(−)
Mi

:= �
(+−)
Mi

∪ �(−−)
Mi

are the subsets of �Mi that have a higher and lower future entropy respectively.
The microstate x ∈ �Mi has the property ‘being entropy increasing’ (‘I’ for short)

iff it lies on a trajectory that moves into a microstate of higher entropy when leaving
�Mi . Hence, x has property I iff x ∈ �(+)

Mi
. Entropy increasing states are typical in

�Mi iff μi(�
(+)
Mi

) ≥ 1 − ε, where μi( · ) := μ( · )/μ(�Mi ) is the Lebesgue measure
relative to �Mi .

A system possesses the property of being ‘globally entropy increasing’ (‘GI’
for short) iff entropy increasing states are typical in every �Mi except the equilib-
rium macrostate itself (because, trivially, once the system has reached equilibrium
entropy cannot further increase). Goldstein and Lebowitz’s explication of typicality
(quoted above) amounts to saying that the system is GI. This can be seen as follows.
In technical terms, Goldstein and Lebowitz’s condition is limn→∞ μi(�

(−)
Mi

) = 0

for all i. Since the �(++)
Mi

, etc., form a partition of �Mi , this is equivalent to

limn→∞ μi(�
(+)
Mi

) = 1 for all macrostates Mi except the equilibrium macrostate.

If we now assume (reasonably) that for n � 1023 we are already ‘close’ to the limit
it follows that μi(�

(+)
Mi

) ≥ 1 − ε for some small but finite ε.

8 Explications of typicality very similar to this one can be found in Lebowitz (1993b, 7–8; 1999,
348).
9 I neglect the possibility that there maybe x that come from or move into microstates of the same
entropy. These cases could be accounted for by introducing the subsets �(0+)

Mi
, etc., and rephrasing

the argument accordingly. One can easily see that this would not alter the conclusions that I reach
and I therefore neglect them in the interest of ease of discussion and notion.
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We now face two questions. First, under what circumstances is it the case that a
system is GI? Second, assuming we have a satisfactory answer to the first question,
do we then have a good explanation for why the system approaches equilibrium? I
discuss these questions in turn.

Goldstein and Lebowitz offer the following answer to the question of when a
system is GI:

Boltzmann then argued that given this disparity in sizes of different M’s [i.e. the above-
mentioned dominance of the equilibrium macrostate], the time evolved [Mx(t)] will be such
that [μ(Mx(t))] and thus [SB(t)] will typically increase in accord with the law. (2004, 57)

They do not reference the work of Boltzmann they have in mind and so we have to
work with their paraphrase of what they take to be Boltzmann’s view. The argument
seems to be that if it is the case that the ratio μ(�Meq )/μ(�Mi), where Mi is a ‘stan-
dard’ non-equilibrium macrostate, is large (i.e. is of the magnitude of 10n), then the
system is GI.

This is incorrect. Dominance of the equilibrium macrostate and being GI are
compatible with each other, but the latter does not follow from the former. From
the fact that �E as a whole is almost entirely filled with equilibrium microstates
and that therefore the measure of �Meq is 10n times the one of other macro-regions,

it just does not follow that within every macro region �(+)
Mi

is typical. In fact, the
dominance of the equilibrium macrostate is compatible, in principle, with it being
the case that μi(�

(+)
Mi

) � μi(�
(−)
Mi

) for many low entropy macrostates Mi, in which
case the system would fail to be GI. And the point is not one about there being
the possibility of one or two macrostates behaving strangely and the system being
‘a little bit non-GI’; it could be the case equilibrium microstates are typical with
respect to �E as a whole, while entropy increasing behaviour is atypical in all low
entropy macrostates.

That Account 3 fails is no surprise; whether or not a system is GI depends both on
its dynamics and the construction of the macrostates and so it would be something
of a miracle if one could prove systems to be GI without even mentioning either of
the two.

Given that we do not have a general argument for the claim that relevant systems
are GI, the best we can do is look at examples. And here the evidence is mixed.
One can show that the Kac ring model is GI (Lavis, 2005, 259). However, GI seems
to fail in other examples. Numerical considerations show that entropy increasing
microstates are not typical within the low entropy macrostates of the baker’s gas (as
David Lavis pointed out to me in personal communication). So GI is not a trivial
condition and there is a substantial question under which circumstances it holds.

There are also problems as regards the second question. To begin with, even if a
system were GI it could still be the case that an approach to equilibrium would not
take place. The problem is the following. Assume that the system is in macrostate
Mi at time t1 and evolves into a macrostate Mj of higher entropy at time t2 (without
passing through any other macrostates in-between). Furthermore assume that in both
Mi and Mj entropy increasing microstates are typical. By construction, all states that
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evolve into Mj from Mi have to be either in �(−+)
Mj

or in �(−−)
Mj

. In which one of
these a particular x ∈ Mi ends up is determined by the dynamics of the system, and
it is possible that under certain dynamical laws most x ∈ Mi end up moving into
�

(−−)
Mj

. In this case most trajectories that are compatible with the system’s actual
past history move towards macrostate of lower entropy after t2, despite the fact that
�

(+)
Mj

is typical in �Mj .
So we need to add the further constraint that the dynamics of the system is such

that for all (or at least most) contiguous macrostates Mi and Mj, where Mi has lower
entropy than Mj, it be the case that the overwhelming majority of microstates in

�
(+)
Mi

move into �(−+)
Mj

. What condition could assure that this is the case? A possi-
ble answer to this question (or, rather, part of an answer) might be that the system
has to show Goldilocks mixing (Earman, 2006, 406). Although Earman discusses
Goldilocks mixing in a different context and does not suggest that it is a solution
to the current problem, it might at least be worth considering whether Goldilocks
mixing, probably in conjunction with other conditions, proves useful in solving the
problem at hand.

Furthermore there is the problem that most of the states that lie on trajectories
that move towards higher entropy macrostates also have a high entropy past, i.e.
behave un-thermodynamically.10 This can be seen as follows. By assumption �(+)

Mi

is typical, i.e. μ(�(+)
Mi

) ≥ 1 − ε, and hence μ(�(−)
Mi

) < ε. Since �(−)
Mi

= �
(−−)
Mi

∪
�

(+−)
Mi

, we also have μ(�(+−)
Mi

) < ε. The time reversal invariance of the Hamiltonian

dynamics implies μ(�(−+)
Mi

) = μ(�(+−)
Mi

) and therefore μ(�(−+)
Mi

) < ε. With �(+)
Mi

) =
�

(−+)
Mi

∪�(++)
Mi

we obtain μ(�(++)
Mi

) ≥ 1− 2ε. Hence the typicality of �(+)
Mi

is hardly
relevant to thermodynamic behaviour because the overwhelming majority of states
in �(+)

Mi
do not exhibit the desired behaviour (i.e. they belong to �(++)

Mi
and hence

have a high entropy past).
Remedy can be found in Albert (2000, Chapter 4), who suggests solving the prob-

lem by conditionalising on the past hypothesis (Albert does not put his argument in
terms of typicality and uses probability language instead; what I am presenting here
is an adaptation of his point to the present context). In technical terms that means
that rather than pondering the question of whether microstates with high entropy
future are typical with respect to the entire set �Mi we should require that this be
the case with respect to �Mi ∩ φt(�Mp ). The question now is whether states which
evolve into macrostates of higher entropy are typical within that set.

And now we are back to the above problem, namely that this question cannot be
answered without taking the dynamics of the system into account. There is noth-
ing, in principle, to rule out that all states that satisfy this condition evolve into
�

(−−)
Mj

once they leave �Mi , in which case the system’s entropy decreases once the

10 A point to this effect was first made by Ehrenfest and Ehrenfest-Afanassjewa (1912, 32–34).
However, their argument is based on an explicitly probabilistic model and so its relevance to
deterministic dynamical system is tenuous.
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states move from �Mj into the next macrostate. Albert (2000, 67, 81–85, 94–96)
suggest ruling out that this happens by requiring that microstates that lead to un-
thermodynamic behaviour are scattered in tiny clusters all over �Mi . This is an
interesting suggestion, but, again, there are neither a priori reasons nor plausibil-
ity arguments to suggest that this generally is the case in relevant systems. Whether
or not this ‘scattering condition’ holds depends on the details of the dynamics and
the construction of the macrostates, and merely asserting that the condition does
hold is simply begging the question.

4.4 Further Qualms

There are five further problems for an approach to SM based on the notion of typi-
cality: the justification of the Lebesgue measure as the relevant typicality measure,
that the equilibrium macrostate may not be typical, that in interacting systems the
largest macrostate may not be the equilibrium macrostate, the reliance on measures
in general, and objections to the explanatory power of typicality even where it can
be had. I will discuss each of these in turn.

First. Typicality judgements in all three accounts I have distinguished are
made relative to the Lebesgue measure μ. How can this be justified? Dürr (1998,
Section 3) emphasises that the crucial criterion for the choice of a typicality mea-
sure is invariance over time. What is typical at some time t also has to be typical
at some earlier or later time t′. In the context of SM this means that the typicality
measure has to be invariant under the dynamics of the system (given by the flow φt).
As we have seen in the Section 4.2, the Lebesgue measure satisfies this criterion and
therefore seems to be a natural choice.

Things are more involved, however. As Zanghì (2005, 189) points out, the
Lebesgue measure μ may not be the only invariant measure in a particular sys-
tem. For any specific Hamiltonian (equivalently for any specific φt) there could also
be invariant measures other than the Lebesgue measure whose explicit form depends
on the details of the dynamics. Zanghì then points out that what makes the Lebesgue
measure special is the fact that it is the only generic invariant measure, meaning that
it is the only measure that is invariant under all Hamiltonian flows.

It is not clear, however, that this fact is relevant for the problem at hand. Each
system is governed by one, and only one, Hamiltonian and it is therefore not clear
why the fact that the Lebesgue measure is the only measure that is invariant under
all Hamiltonians is relevant for typicality judgements in this system. If it happens
that there is a measure μ′ which is invariant under the dynamics of the system under
investigation and which is non-equivalent to the Lebesgue measure, why should we
not make typicality judgments about this system with respect to μ′? This question
is particularly pressing for those – like most Boltzmannians – who take the relevant
system to be the universe as a whole and the past state the Big Bang. There is only
one universe and there is only one Hamiltonian flow in this universe. What reason
could there be to prefer μ to μ′ to make typicality judgements in this universe?
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There is no obvious answer to this question. But maybe none is needed. A similar
issue arises in the case of the Galton board. Maudlin (2007) points out that atypical
initial conditions have measure zero and hence typicality judgments remain unal-
tered under a change of measures as long as the alternative measure μ′ is absolutely
continuous with the Lebesgue measure μ.11 So there is actually no need to worry
about the question of picking the ‘right’ measure because under all choices the same
sets come out as typical, which is all we need.

It is not clear whether this strategy is available in SM. First, Maudlin’s argument
only applies to measures that are absolutely continuous with the Lebesgue measure.
So we would need an argument for the conclusion that all invariant measures have
this property. This may or may not be the case; at any rate it is not a priori clear
that this is so.12 Second, one would have to show that it is indeed the case that all
atypical sets have Lebesgue measure zero. Again, this is not evidently so. Even in
a simple system like the Galton Board a host of drastic idealisations are needed to
reach this conclusion (for instance, one has to assume that the board is infinitely long
and that all the nails are perfectly symmetrical), which then still is only supported
by a plausibility argument and not a rigorous proof. It is not clear that idealisations
of this sort can be made of our universe, and even if they can this may not yield
the desired result because the dynamics of our universe is much more complex than
the one of the Galton Board. Hence, it is at least a possibility that some sets of
finite measure are atypical. If this is the case and if there is an invariant measure
μ′ (which could even be absolutely continuous with μ), it might be the case that
μ′ assigns high weights to sets that come out small under μ, which would reverse
typicality judgements. Hence what is typical with respect to μ would come out to
be atypical with respect to μ′ and vice versa. There is no a priori reason to rule out
this possibility.

Second. A further difficulty concerns the dominance of the equilibrium
macrostate. As I have briefly mentioned above, from the fact that the equilibrium
macrostate is larger than any other macrostate one cannot infer that it is typical.
Lavis (2005, 255–258) points out that entropy levels can be degenerate, mean-
ing that there may be more than one macrostate for which the Boltzmann entropy
assumes a particular value. More precisely, consider a particular macrostate Mj,
construct the set {Mi|SB(Mi) = SB(Mj), i = 1, ..., m} of all macrostates that have
the same entropy as Mj, and let ωj be the number of macrostates in this set; ωj

is the degeneracy of the entropy value SB(Mj). The important point is that these
degeneracies may be large enough for it to be the case that the non-equilibrium
macrostates associated with a particular entropy value together take up a larger
chunk of the phase space than the equilibrium macrostate; that is, it may be the case

11 A measureμ′ is absolutely continuous withμ iff for any measurable region A ⊆ �E: ifμ(A) = 0
then μ′(A) = 0. More colloquially, a measure μ′ is absolutely continuous with another measure μ
if it assigns measure zero to all sets that are assigned measure zero by μ, while, possibly, assigning
different values to the sets to which μ assigns non-zero measure.
12 Maybe an defence along the lines of Malement and Zabell (1980) would fit the bill, but this
would need to be argued in detail.
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that ωj μ(�Mj) > μ(�Meq ), for some non-equilibrium macrostate Mj. Lavis shows
that this is not only a theoretical possibility. He points out that it is exactly what hap-
pens in the case of the baker’s gas (ibid.) and in the Kac ring model (Lavis, 2008,
Section 2), in which the proportion of the phase space occupied by the maximum
entropy state even decreases as n becomes large. Of course, real systems are neither
baker’s gases nor Kac rings and so this problem with degeneracies may not surface
in more ‘realistic’ systems. However, whether or not this is the case depends on the
details of the system and one would have to show that in the systems of interest no
such degeneracies crop up.

Third. So far we have assumed that the equilibrium macrostate is the largest of
all macrostates (and the second problem concerns the question of whether this state
is typical in �E). Although this is usually stated as if it were a general truism, it
is proven only for an ideal gas, i.e. a system of non-interacting particles. In broad
outline, the reasoning, invented by Boltzmann in 1877 and now usually referred
to as the ‘combinatorial argument’, is as follows (for an in-depth discussion see
Uffink (2007, 974–983). Consider the phase-space of one gas molecule; the state
of the entire gas (consisting of n molecules) is specified by n labeled points in this
space. Now put a grid-like partition on it with the border of the cells running in
the directions of the momentum and position axes. Every one of the n points comes
to lie within a particular cell of the partition. A specification of which point lies
in which cell is called an ‘arrangement’; a specification of how many points (no
matter which ones) are in each cell is a ‘distribution’. Boltzmann then considered
how many arrangements are compatible with each distribution and associated the
logarithm of this number, W, with the entropy of the system (this can be shown to
be equivalent to the definition of the Boltzmann entropy given in Section 4.2). One
can then prove that W is proportional to the Lebesgue measure of the region of the
n-particle phase space, corresponding to the distribution. By construction it follows
that largest macrostate is associated with the largest Boltzmann entropy, and this
macrostate is then considered to be the equilibrium macrostate.

However, we should not be mislead by the suggestive use of the word ‘entropy’;
the argument so far is just a combinatorial exercise and its physical relevance yet
needs to be shown. And this is where the crucial assumptions enter. Suppose that
the energy of a molecule only depends on the cell in which it is (but not on where
all the other molecules are) and that the total energy of the system is the sum of
these ‘individual’ energies. Under this assumption (and the further assumption that
the number of molecules in each cell is far greater than one) one can prove that
the velocity distribution of those phase points that are in the maximum Boltzmann
entropy region is the Maxwell-Boltzmann equilibrium distribution. For this reason
it is indeed legitimate to associate equilibrium with maximum Boltzmann entropy.

The crucial assumption in this proof is that the entropy of a molecule only
depends on the cell in which it is, as this amounts to nothing less than the assump-
tion that there is no interaction between the molecules; in other words, it amounts
to assuming that the system is an ideal gas (Uffink, 2007, 976). Hence, for sys-
tems that are not ideal gases there is at least a question of whether their equilibrium
macrostate can be associated with the largest macrostate. And this is more than an
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academic point. Most systems, not least the universe as a whole, are not ideal gases,
not even approximately, and it is not clear whether in such systems the equilibrium
macrostate can legitimately be associated with the largest macrostate (i.e. the one
for which the Boltzmann entropy is maximal).

In fact, it is a real option that this is not the case. Consider a system of gravitating
particles. These particles attract each other and hence have the tendency to clump
together. So if it happens that a large amount of these are distributed evenly over a
bounded space, then they will move together and eventually form a lump. However,
the volume corresponding to a lump is much smaller than the one corresponding to
the original spread out state, and hence it seems that the system evolves from a high
to a low entropy state. This conclusion is usually blocked by pointing out that the
loss in volume in configuration space is compensated by a corresponding increase in
volume in momentum space, and as a result entropy does not decrease after all. But
whether this is true depends on the details of the system at hand. There are situations
in which this is not the case, for instance one in which all particles end up moving
around with almost the same velocity and hence occupy only a small volume of
momentum space. So one would need to argue that the systems of interest are not
of this kind.13

Fourth. One of the main objections against approaches to SM that invoke ergod-
icity is the so-called ‘measure zero problem’ (see van Lith (2001) for a discussion).
The results of ergodic theory come with the qualification ‘almost everywhere’ –
i.e. everywhere except, perhaps, for a set of measure zero – which is commonly
understood as suggesting that sets of measure zero can be ignored because they are
somehow ‘sparse’. This piece of common wisdom has been criticised as untenable.
Sets of measure zero need not be ‘small’ at all (e.g. the rational numbers have mea-
sure zero within the real numbers and yet there are ‘many’ of them) and, as Sklar
(1993, 182–188) points out, a set of measure zero need not be (or even appear to be)
negligible if sets are compared with respect to properties other than their measures.
For instance, we can judge the ‘size’ of a set by its cardinality or Bair category rather
than by its measure which may lead to different conclusions about a set’s ‘size’.

This point has to do with the use of measures in general and is not specific to
ergodic theory. In fact, because typicality is determined with respect to a measure,
approaches to SM appealing to typical behaviour face a very similar problem: sets of
measure zero (like the rational numbers) are classified as atypical and it is suggested
that these can therefore be neglected. However, echoing Sklar’s point, sets that come
out as atypical when compared to other sets with respect to their measures may not
come out as atypical when compared with respect to some other property (such
as their Bair category). So we face the question of what conveys upon measures a
privileged status when it comes to judging typicality.

Fifth. The basic strategy of typicality-based approaches is to explain X by point-
ing out that X is typical. For instance, when asked why a system approaches

13 See Callender (2010) for a further discussion of the problems that arise in connection with
gravity.
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equilibrium the proponent of Approach 2 answers that this is because initial con-
ditions that lie on trajectories that approach equilibrium are typical in the set of
all initial conditions. It is questionable whether this answer is satisfactory, even if
the desired behaviour in fact turns out to be typical. The problem is, again, paral-
lel to one that threatens the ergodic approach. As Sklar (1973, 210–211) points out
in his critique of this approach, from the fact that an initial condition lies within
a set of measure zero we cannot infer that this initial condition does not occur.
Whether the system has a particular initial condition is a factual question, and
as such it has to be settled by an appeal to matters of fact and not measures of
sets; to explain why the system exhibits entropy increasing behaviour we need an
argument for the conclusion that the system indeed started out in a typical initial
condition, but that these are of measure (close to) one does not give us such an
argument.

But now the significance of typicality seems to have evaporated entirely. All we
need to explain a system’s actual behaviour is that its actual initial condition is
one which, under the dynamical law governing the system’s evolution, evolves in
a thermodynamic way. Whether or not this initial condition is also typical is sim-
ply irrelevant. So typicality does not play a role in explaining the behaviour of a
particular system (like, for instance, our universe).

One could reply that the notion of explanation that underlies this criticism is too
metaphysical (in that it implicitly assumes that an explanation of X has to show that
X must happen under the given circumstances) and that a different, less assuming,
notion should be applied. An obvious candidate is rational expectability. On this
conception of explanation we explain X by showing that it is rationally expectable
that X occurs. This seems to square well with typicality, because if a behaviour is
typical we are surely rationally justified in believing that it occurs most of the time.
This also squares well with the intuition driving the (probabilistic version of) the
covering law account of scientific explanation, according to which we explain X if
we can show that X is very likely to occur.

But even if we are willing to set all the well-known problems of accounts of this
sort aside (see Salmon (1992) for survey), such an account would not sit well with
the general hostility towards epistemic approaches that permeates this literature, in
particular the flamboyant rejection of an epistemic interpretation of probability (see
for instance Albert (2000, 64), Loewer (2001, 611), and Goldstein (2001, 48)). But if
we reject an epistemic notion of explanation, it remains unclear how we can explain
the behaviour of a particular system (this universe) by appeal to typicality.

4.5 Conclusion

I have distinguished three different ways in which typicality is used to explain why
systems approach equilibrium and argued that none of them is successful. The first
is false for mathematical reasons, while the latter two prima facie provide a restate-
ments of the problem rather than a solution because they do not provide dynamical
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conditions. But even if these difficulties can be solved, there are further concep-
tual problems. First, all accounts attribute a special status to the Lebesgue measure,
but the justifications of this choice do not seem to be conclusive. Second, it is not
clear whether the equilibrium macrostate is typical in �E. Third, typicality argu-
ments are usually put forward in the context of ideal gases, and there are serious
questions about whether they can be carried over to gravitating systems. Fourth,
like approaches based on ergodicity, typicality arguments dismiss sets of measure
zero as ‘negligible’. It is not clear, however, how this can be justified. Finally, it is
questionable whether an appeal to what typically happens has any explanatory force
at all when it comes to explaining what happens in a particular system.
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